Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Composite poplars: a novel tool for ectomycorrhizal research.

Identifieur interne : 001463 ( Main/Exploration ); précédent : 001462; suivant : 001464

Composite poplars: a novel tool for ectomycorrhizal research.

Auteurs : Dimitri Neb [Allemagne] ; Arpita Das [Allemagne] ; Annette Hintelmann [Allemagne] ; Uwe Nehls [Allemagne]

Source :

RBID : pubmed:29063187

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

Composite poplars were used for ectomycorrhiza formation. Structurally normal mycorrhizas of transgenic roots revealed better fungal sugar support. Targeting fluorescent proteins to peroxisomes allowed easy in planta visualization of successful transformation. A bottle neck in ectomycorrhizal research is the time demand for generation of transgenic plants. An alternative strategy for such root-centered research might be the formation of the so-called composite plants, where transgenic roots are formed by non-transgenic shoots. We have developed an Agrobacterium rhizogenes-mediated root transformation protocol using axenic Populus tremula × tremuloides and P. tremula × alba cuttings. When comparing four different bacterial strains, A. rhizogenes K599 turned out to be the most suitable for poplar transformation. Transgenic roots revealed only minor hairy root phenotype when plants were grown on agar plates with synthetic growth medium in the absence of a sugar source. When using different ectomycorrhizal fungi, formation of ectomycorrhizas by transgenic roots of composite poplars was not affected and mycorrhizas were anatomically indistinguishable from mycorrhizas of non-transgenic roots. Elevated trehalose content and marker gene expression, however, pointed towards somewhat better fungal carbon nutrition in ectomycorrhizas of transgenic compared to non-transgenic roots. Cell wall autofluorescence of poplar fine roots is an issue that can limit the use of fluorescent proteins as visual markers for in planta analysis, especially after ectomycorrhiza formation. By targeting marker proteins to peroxisomes, sensitive fluorescence detection, easily distinguishable from cell wall autofluorescence, was obtained for both poplar fine roots and ectomycorrhizas.


DOI: 10.1007/s00299-017-2212-2
PubMed: 29063187
PubMed Central: PMC5668338


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Composite poplars: a novel tool for ectomycorrhizal research.</title>
<author>
<name sortKey="Neb, Dimitri" sort="Neb, Dimitri" uniqKey="Neb D" first="Dimitri" last="Neb">Dimitri Neb</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Das, Arpita" sort="Das, Arpita" uniqKey="Das A" first="Arpita" last="Das">Arpita Das</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hintelmann, Annette" sort="Hintelmann, Annette" uniqKey="Hintelmann A" first="Annette" last="Hintelmann">Annette Hintelmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nehls, Uwe" sort="Nehls, Uwe" uniqKey="Nehls U" first="Uwe" last="Nehls">Uwe Nehls</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany. nehls@uni-bremen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29063187</idno>
<idno type="pmid">29063187</idno>
<idno type="doi">10.1007/s00299-017-2212-2</idno>
<idno type="pmc">PMC5668338</idno>
<idno type="wicri:Area/Main/Corpus">001112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001112</idno>
<idno type="wicri:Area/Main/Curation">001112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001112</idno>
<idno type="wicri:Area/Main/Exploration">001112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Composite poplars: a novel tool for ectomycorrhizal research.</title>
<author>
<name sortKey="Neb, Dimitri" sort="Neb, Dimitri" uniqKey="Neb D" first="Dimitri" last="Neb">Dimitri Neb</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Das, Arpita" sort="Das, Arpita" uniqKey="Das A" first="Arpita" last="Das">Arpita Das</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hintelmann, Annette" sort="Hintelmann, Annette" uniqKey="Hintelmann A" first="Annette" last="Hintelmann">Annette Hintelmann</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nehls, Uwe" sort="Nehls, Uwe" uniqKey="Nehls U" first="Uwe" last="Nehls">Uwe Nehls</name>
<affiliation wicri:level="3">
<nlm:affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany. nehls@uni-bremen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>Populus (genetics)</term>
<term>Populus (microbiology)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Transformation génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (microbiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agrobacterium</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agrobacterium</term>
<term>Transformation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Composite poplars were used for ectomycorrhiza formation. Structurally normal mycorrhizas of transgenic roots revealed better fungal sugar support. Targeting fluorescent proteins to peroxisomes allowed easy in planta visualization of successful transformation. A bottle neck in ectomycorrhizal research is the time demand for generation of transgenic plants. An alternative strategy for such root-centered research might be the formation of the so-called composite plants, where transgenic roots are formed by non-transgenic shoots. We have developed an Agrobacterium rhizogenes-mediated root transformation protocol using axenic Populus tremula × tremuloides and P. tremula × alba cuttings. When comparing four different bacterial strains, A. rhizogenes K599 turned out to be the most suitable for poplar transformation. Transgenic roots revealed only minor hairy root phenotype when plants were grown on agar plates with synthetic growth medium in the absence of a sugar source. When using different ectomycorrhizal fungi, formation of ectomycorrhizas by transgenic roots of composite poplars was not affected and mycorrhizas were anatomically indistinguishable from mycorrhizas of non-transgenic roots. Elevated trehalose content and marker gene expression, however, pointed towards somewhat better fungal carbon nutrition in ectomycorrhizas of transgenic compared to non-transgenic roots. Cell wall autofluorescence of poplar fine roots is an issue that can limit the use of fluorescent proteins as visual markers for in planta analysis, especially after ectomycorrhiza formation. By targeting marker proteins to peroxisomes, sensitive fluorescence detection, easily distinguishable from cell wall autofluorescence, was obtained for both poplar fine roots and ectomycorrhizas.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29063187</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>36</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2017</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Composite poplars: a novel tool for ectomycorrhizal research.</ArticleTitle>
<Pagination>
<MedlinePgn>1959-1970</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-017-2212-2</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="UNASSIGNED">Composite poplars were used for ectomycorrhiza formation. Structurally normal mycorrhizas of transgenic roots revealed better fungal sugar support. Targeting fluorescent proteins to peroxisomes allowed easy in planta visualization of successful transformation. A bottle neck in ectomycorrhizal research is the time demand for generation of transgenic plants. An alternative strategy for such root-centered research might be the formation of the so-called composite plants, where transgenic roots are formed by non-transgenic shoots. We have developed an Agrobacterium rhizogenes-mediated root transformation protocol using axenic Populus tremula × tremuloides and P. tremula × alba cuttings. When comparing four different bacterial strains, A. rhizogenes K599 turned out to be the most suitable for poplar transformation. Transgenic roots revealed only minor hairy root phenotype when plants were grown on agar plates with synthetic growth medium in the absence of a sugar source. When using different ectomycorrhizal fungi, formation of ectomycorrhizas by transgenic roots of composite poplars was not affected and mycorrhizas were anatomically indistinguishable from mycorrhizas of non-transgenic roots. Elevated trehalose content and marker gene expression, however, pointed towards somewhat better fungal carbon nutrition in ectomycorrhizas of transgenic compared to non-transgenic roots. Cell wall autofluorescence of poplar fine roots is an issue that can limit the use of fluorescent proteins as visual markers for in planta analysis, especially after ectomycorrhiza formation. By targeting marker proteins to peroxisomes, sensitive fluorescence detection, easily distinguishable from cell wall autofluorescence, was obtained for both poplar fine roots and ectomycorrhizas.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Neb</LastName>
<ForeName>Dimitri</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Arpita</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hintelmann</LastName>
<ForeName>Annette</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nehls</LastName>
<ForeName>Uwe</ForeName>
<Initials>U</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4421-6455</Identifier>
<AffiliationInfo>
<Affiliation>Faculty 2, Biology/Chemistry, Botany, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany. nehls@uni-bremen.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Agrobacterium</Keyword>
<Keyword MajorTopicYN="N">Composite poplars</Keyword>
<Keyword MajorTopicYN="N">Ectomycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Fluorescent proteins</Keyword>
<Keyword MajorTopicYN="N">Plant transformation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29063187</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-017-2212-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00299-017-2212-2</ArticleId>
<ArticleId IdType="pmc">PMC5668338</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biotechnol. 2007 Feb 20;128(3):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2007 Jan-Mar;27(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17364688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Jun;25:53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25988582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Sep;28(9):1399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):545-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1989 May;8(1):12-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1909028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1998 Dec;207(2):296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9951730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Appl Genet. 1984;2(5):465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6090564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(6):1087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Sep;25(9):959-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16596429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1978 Jul 11;163(2):181-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">355847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 25;468(7323):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Oct;79(2):568-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Jul;29(7):937-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Nov 26;12(22):8711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6095209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Feb;180(2):323-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Oct;166(2):455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24868032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Aug;43(3):449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16045479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):890-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26084921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):828-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Jan;229(2):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18946679</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Brême (Land)</li>
</region>
<settlement>
<li>Brême</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Brême (Land)">
<name sortKey="Neb, Dimitri" sort="Neb, Dimitri" uniqKey="Neb D" first="Dimitri" last="Neb">Dimitri Neb</name>
</region>
<name sortKey="Das, Arpita" sort="Das, Arpita" uniqKey="Das A" first="Arpita" last="Das">Arpita Das</name>
<name sortKey="Hintelmann, Annette" sort="Hintelmann, Annette" uniqKey="Hintelmann A" first="Annette" last="Hintelmann">Annette Hintelmann</name>
<name sortKey="Nehls, Uwe" sort="Nehls, Uwe" uniqKey="Nehls U" first="Uwe" last="Nehls">Uwe Nehls</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001463 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001463 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29063187
   |texte=   Composite poplars: a novel tool for ectomycorrhizal research.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29063187" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020